Числовые последовательности Признак монотонности функции Функции нескольких переменных Система линейных алгебраических уравнений Экономический анализ транспортных задач

Математический анализ, математическая статистика

Способы задания функции Аналитический способ: связь между аргументом x и функцией y задается формулой, при этом на разных участках области определения она может задаваться различными формулами (см. пример 2) . В примерах 1, 2 функции заданы аналитически. Табличный способ: функция задается таблицей отдельных значений аргумента и соответствующих значений функции. Такими являются таблицы тригонометрических функций, таблицы логарифмов и т.д. Графический способ: в этом случае соответствие между значениями x и y задается с помощью графика.

ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ

Понятие производной

Определение производной

Пусть функция f(x) определена на некотором промежутке X. Придадим значению аргумента в точке x0  Х произвольное приращение Δx так, чтобы точка x0 + Δx также принадлежала X. Тогда соответствующее приращение функции f(x) составит Δу = f(x0 + Δx) — f(x0).

Определение 1. Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при Δx  0 (если этот предел существует).

Для обозначения производной функции употребимы символы у' (x0) или f'(x0): Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до порядка n функции и их производные непрерывны и дифференцируемы в этой окрестности}.

Если в некоторой точке x0 предел (4.1) бесконечен:

то говорят, что в точке x0 функция f(x) имеет бесконечную производную.

Если функция f(x) имеет производную в каждой точке множества X, то производная f'(x) также является функцией от аргумента х, определенной на X.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2. Касательной к графику функции у = f(x) в точке М называется предельное положение секущей MN, когда точка N стремится к точке М по кривой f(x).

Пусть точка М на кривой f(x) соответствует значению аргумента x0, а точка N — значению аргумента x0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx. Из треугольника MNA следует, что

Если производная функции f(x) в точке x0 существует, то, согласно (4.1), получаем

Отсюда следует наглядный вывод о том, что производная f'(x0) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной к графику функции у = f(x) в точке М(x0, f(x0)). При этом угол наклона касательной определяется из формулы (4.2):

Физический смысл производной

Предположим, что функция l = f(t) описывает закон движения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) - f(t) — это путь, пройденный за интервал времени Δt, а отношение Δl/Δt — средняя скорость за время Δt. Тогда предел определяет мгновенную скорость точки в момент времени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f'(x), тем больше угол наклона касательной к кривой, тем круче график f(x) и быстрее растет функция.

Правая и левая производные

По аналогии с понятиями односторонних пределов функции вводятся понятия правой и левой производных функции в точке.

Определение 3. Правой (левой) производной функции у = f(x) в точке x0 называется правый (левый) предел отношения (4.1) при Δx  0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

Если функция f(x) имеет в точке x0 производную, то она имеет левую и правую производные в этой точке, которые совпадают.

Приведем пример функции, у которой существуют односторонние производные в точке, не равные друг другу. Это f(x) = |x|. Действительно, в точке х = 0 имеем f’+(0) = 1, f'-(0) = -1 (рис. 4.2) и f’+(0) ≠ f’-(0), т.е. функция не имеет производной при х = 0.

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

ТЕОРЕМА 1. Если функция дифференцируема в точке x0, то она и непрерывна в этой точке.

Обратное утверждение неверно: функция f(x), непрерывная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x|; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, поскольку из первого автоматически вытекает второе.

Уравнение касательной к графику функции в данной точке

Как было указано в разделе 3.9, уравнение прямой, проходящей через точку М(x0, у0) с угловым коэффициентом k имеет вид 

Пусть задана функция у = f(x). Тогда поскольку ее производная в некоторой точке М(x0, у0) является угловым коэффициентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функции f(x) в этой точке имеет вид

4.2. Понятие дифференциала функции

Определение и геометрический смысл дифференциала

Определение 1. Дифференциалом функции у = f(x) в точке x0 называется главная линейная относительно Δx часть приращения функции в этой точке: 

Дифференциалом dx независимой переменной х будем называть приращение этой переменной Δx, т.е. соотношение (4.3) принимает вид

Из равенства (4.4) производную f'(x) в любой точке х можно вычислить как отношение дифференциала функции dy к дифференциалу независимой переменной dx:

Дифференциал функции имеет четкий геометрический смысл (рис. 4.3). Пусть точка М на графике функции у = f{x) соответствует значению аргумента x0, точка N — значению аргумента x0 + Δx, MS — касательная к кривой f(x) в точке М, φ — угол между касательной и осью Ох. Тогда МА — приращение аргумента, AN — соответствующее приращение функции. Рассматривая треугольник АВМ, получаем, что АВ = Δx tg φ = f'(x0) Δx = dy, т.е. это главная по порядку величины Δx и линейная относительно нее часть приращения функции Δу. Оставшаяся часть более высокого порядка малости соответствует отрезку BN.

Приближенные вычисления с помощью дифференциала

Приближенные вычисления с применением дифференциала функции основаны на приближенной замене приращения функции в точке на ее дифференциал:

Абсолютная погрешность от такой замены является, как следует из рис. 4.3, при Δx  0 бесконечно малой более высокого порядка по сравнению с Δx. Подставляя в это приближенное соотношение формулу (4.4) и выражение для Δу, получаем

Формула (4.6) является основной в приближенных вычислениях.

Пример. Вычислить приближенное значение корня .

Решение. Рассмотрим функцию f(x) = x0,5 в окрестности точки x0 = 1. Поскольку, как будет показано далее, производная этой функции вычисляется по формуле f'(x) = , то, принимая Δx = 0,07, получаем из формулы (4.6)

4.3. Правила дифференцирования суммы, произведения и частного 

Приведем без доказательства одну из основных теорем дифференциального исчисления.

ТЕОРЕМА 2. Если функции и(х) и v(x) дифференцируемы в точке х0, то сумма (разность), произведение и частное этих функций (частное при условии v(x) ≠ 0) также дифференцируемы в этой точке, причем справедливы следующие формулы:

4.4. Таблица производных простейших элементарных функций

Производные всех простейших элементарно функций можно свести в следующую таблицу.

1. (С)' = 0, где С — постоянное число. 

2. (xα)' = αxα-1; в частности,  = - , ()' = .

3. (logax)' = logae; в частности, (ln x)' = .

4. (аx)' = ax ln а; в частности, (еx)' = еx.

5. (sin x)' = cos x.

6. (cos x)’= -sin x.

7.(tg x)' = .

8. (ctg x)' = - .

9. (arcsin х)' = .

10. (arccos x)' = - .

11. (arctg x)' = .

12. (arcctg x)' = - .

Формулы, приведенные в таблице, вместе с правилами дифференцирования (теорема 4.2) являются основными формулами дифференциального исчисления. Отсюда можно сделать важный вывод: поскольку производная любой элементарной функции есть также элементарная функция, то операция дифференцирования не выводит из класса элементарных функций.

Бесконечно малые и бесконечно большие функции Функция f(x) называется бесконечно малой функцией (или просто бесконечно малой) в точке x = а, если предел ее в этой точке равен нулю: f(x) = 0.

Линии второго порядка Рассмотрим здесь три наиболее используемыx вида линий: эллипс, гиперболу и параболу.

Дифференцирование сложной функции Пусть функция х = φ(t) имеет производную в точке t0, а функция у = f(x) имеет производную в соответствующей точке x0 = φ(t0). Тогда сложная функция f[φ(t)] имеет производную в точке t0 u справедлива следующая формула: 

Раскрытие неопределенностей Правило Лопиталя Будем говорить, что отношение двух функций  при x  a есть неопределенность вида , если  Раскрыть эту неопределенность означает вычислить предел , если он существует.

Понятие функции нескольких переменных. Область определения. Графики. Примеры. Пусть задано множество D упорядоченных пар чисел (х;у). Соответствие f, которое каждой паре чисел (x;y)I^D сопоставляет одно и только одно число uI^R, называется функцией двух переменных, определенной на множестве D со значениями в R, и записывается в виде u=f(x;y) или f:D?R. При этом х и у называются независимыми переменными (аргументами), а u - зависимой переменной (функцией).
Решение задач математического анализа