Метод непосредственного интегрирования Аналитическая геометрия на плоскости Элементы  линейной алгебры. Аналитическая геометрия в пространстве Основы дифференцирования Интегрирование по частям Двойной интеграл.

Введение в математический анализ. Вычисление интеграла

История рождения метода Монте-Карло Метод Монте-Карло (методы Монте-Карло) — общее название группы численных методов, основанных на получении большого числа реализаций случайного (стохастического) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи. Используется для решения задач в областях физики, математики, экономики, оптимизации, теории управления и др.

Введение в математический анализ.

Числовая последовательность.

  Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность

x1, х2, …, хn = {xn}

  Общий элемент последовательности является функцией от n.

xn = f(n)

Таким образом последовательность может рассматриваться как функция.

Задать последовательность можно различными способами – главное, чтобы был указан способ получения любого члена последовательности. Вычисление криволинейных интегралов первого рода

  Пример. {xn} = {(-1)n} или {xn} = -1; 1; -1; 1; …

 {xn} = {sinpn/2} или {xn} = 1; 0; 1; 0; …

Для последовательностей можно определить следующие операции:

Умножение последовательности на число m: m{xn} = {mxn}, т.е. mx1, mx2, …

Сложение (вычитание) последовательностей: {xn} ± {yn} = {xn ± yn}.

Произведение последовательностей: {xn}×{yn} = {xn×yn}.

Частное последовательностей:  при {yn} ¹ 0.

 

Ограниченные и неограниченные последовательности.

 Определение. Последовательность {xn} называется ограниченной, если существует такое число М>0, что для любого n верно неравенство:

т.е. все члены последовательности принадлежат промежутку (-М; M).

 Определение. Последовательность {xn}называется ограниченной сверху, если для любого n существует такое число М, что

xn £ M.

  Определение. Последовательность {xn}называется ограниченной снизу, если для любого n существует такое число М, что

xn ³ M

 Пример. {xn} = n – ограничена снизу {1, 2, 3, … }.

 Определение. Число а называется пределом последовательности {xn}, если для любого положительного e>0 существует такой номер N, что для всех n > N выполняется условие:

Это записывается: lim xn = a.

 В этом случае говорят, что последовательность {xn}сходится к а при n®¥.

 Свойство: Если отбросить какое- либо число членов последовательности, то получаются новые последовательности, при этом если сходится одна из них, то сходится и другая.

 

 Пример. Доказать, что предел последовательности lim .

Пусть при n > N верно , т.е. . Это верно при , таким образом, если за N взять целую часть от , то утверждение, приведенное выше, выполняется.

 Пример. Показать, что при n®¥ последовательность 3,  имеет пределом число 2.

 Итого: {xn}= 2 + 1/n; 1/n = xn – 2

Очевидно, что существует такое число n, что , т.е. lim {xn} = 2.

 Теорема. Последовательность не может иметь более одного предела.

 Доказательство. Предположим, что последовательность {xn}имеет два предела a и b, не равные друг другу.

xn ® a; xn ® b; a ¹ b.

Тогда по определению существует такое число e >0, что

Запишем выражение:

А т.к. e- любое число, то , т.е. a = b. Теорема доказана.

 

 Теорема. Если xn ® a, то .

 Доказательство. Из xn ® a следует, что . В то же время:

, т.е.  , т.е. . Теорема доказана.

 Теорема.  Если xn ® a, то последовательность {xn} ограничена.

Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость.

 Например, последовательностьне имеет предела, хотя

 

Монотонные последовательности.

  Определение. 1) Если xn+1 > xn для всех n, то последовательность возрастающая.

  2)Если xn+1 ³ xn для всех n, то последовательность неубывающая.

  3)Если xn+1 < xn для всех n, то последовательность убывающая.

 4)Если xn+1 £ xn для всех n, то последовательность невозрастающая

Все эти последовательности называются монотонными. Возрастающие и убывающие последовательности называются строго монотонными.

 Пример. {xn} = 1/n – убывающая и ограниченная

 {xn} = n – возрастающая и неограниченная.

  Пример. Доказать, что последовательность {xn}= монотонная возрастающая.

 Найдем член последовательности {xn+1}=

Найдем знак разности: {xn}-{xn+1}=

, т.к. nÎN, то знаменатель положительный при любом n.

Таким образом, xn+1 > xn. Последовательность возрастающая, что и следовало доказать.

 

 Пример. Выяснить является возрастающей или убывающей последовательность

{xn} = .

  Найдем . Найдем разность

, т.к. nÎN, то 1 – 4n <0, т.е. хn+1 < xn. Последовательность монотонно убывает.

Следует отметить, что монотонные последовательности ограничены по крайней мере с одной стороны.

 

Теорема. Монотонная ограниченная последовательность имеет предел.

 Доказательство. Рассмотрим монотонную неубывающую последовательность

х1 £ х2 £ х3 ££ хn £ xn+1 £

Эта последовательность ограничена сверху: xn £ M, где М – некоторое число.

Т.к. любое, ограниченное сверху, числовое множество имеет четкую верхнюю грань, то для любого e>0 существует такое число N, что xN > a - e, где а – некоторая верхняя грань множества.

Т.к. {xn}- неубывающая последовательность, то при N > n а - e < xN £ xn,

xn > a - e.

Отсюда a - e < xn < a + e

-e < xn – a < e или ôxn - aô< e, т.е. lim xn = a.

Для остальных монотонных последовательностей доказательство аналогично.

Теорема доказана.

Число е. Рассмотрим последовательность {xn} = . Если последовательность {xn} монотонная и ограниченная, то она имеет конечный предел.

Бесконечно малые функции. Определение. Функция f(x) называется бесконечно малой при х®а, где а может быть числом или одной из величин ¥, +¥ или -¥, если . Бесконечно малой функция может быть только если указать к какому числу стремится аргумент х. При различных значениях а функция может быть бесконечно малой или нет.

Понятие о комплексных числах. Определение. Комплексным числом z называется выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением: При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).

Производная функции, ее геометрический и физический смысл.  Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

Связь случайных процессов и дифференциальных уравнений Создание математического аппарата случайных методов началось в конце 19го века. В 1899 году лорд Релей показал, что одномерное случайное блуждание на бесконечной решетке может давать приближенное решение параболического дифференциального уравнения. Колмогоров в 1931 году дал большой толчок развитию случайных подходов к решению различных математических задач, поскольку он сумел доказать, что цепи Маркова связаны с некоторыми интегро-дифференциальными уравнениями. В 1933 году Петровский показал, что случайное блуждание, образующее Марковскую цепь асимптотически связано с решением эллиптического дифференциального уравнения в частных производных. После этих открытий стало понятно, что, случайные процессы можно описывать дифференциальными уравнениями и, соответственно, исследовать при помощи хорошо на тот момент разработанных математических методов решения этих уравнений.
Решение задач на вычисление интегралов