Числовые последовательности Признак монотонности функции интернет казино для андроид на реальные деньги, no в москве Функции нескольких переменных Система линейных алгебраических уравнений Экономический анализ транспортных задач

Математический анализ, математическая статистика

Понятие множества является первоначальным понятием математики, точное определение ему не дается, но его можно пояснить, описать через другие понятия. Можно сказать, что множество – это совокупность, собрание каких-то объектов, предметов, при этом объект, входящий в это множество, называют его элементом. Множества могут содержать как конечное число элементов, так и бесконечно много элементов. Рассматривают и множество, не содержащее элементов, его называют пустым и обозначают символом

Стратегическое планирование выпуска изделий с учетом имеющихся ресурсов

Фирма выпускает три вида изделий, располагая при этом сырьем 4 типов: А, Б, В, Г соответственно в количествах 18, 16, 8 и 6 т. Нормы затрат каждого типа сырья на единицу изделия первого вида составляют соответственно 1, 2, 1, 0, второго вида — 2, 1, 1, 1 и третьего вида — 1, 1, 0, 1. Прибыль от реализации единицы изделия первого вида равна 3 усл. ед., второго — 4 усл. ед., третьего — 2 усл. ед.

Требуется:

составить план производства трех видов, максимизирующих прибыль; Задача. Найти частные производные , и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0. Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

определить дефицитность сырья;

установить размеры максимальной прибыли при изменении сырья А на 6 т, Б — на 3 т, В — на 2 т, Г — на 2 т. Оценить раздельное влияние этих изменений и суммарное их влияние на прибыль;

оценить целесообразность введения в план производства фирмы нового вида изделий (четвертого), нормы затрат на единицу которого соответственно равны 1, 2, 2, 0, а прибыль составляет 15 усл. ед.

Решение. 1. Обозначим через  = (x1, x2, x3) план производства изделий трех видов, тогда математическая модель задачи примет вид

при ограничениях:

Решаем задачу симплексным методом, при этом последняя таблица будет иметь вид табл. 22.3.

Из таблицы следует

Согласно теоремам двойственности

2. Наиболее дефицитным является сырье типа В, для которого двойственная оценка у3 = 2. Менее дефицитным является сырье вида Б, для которого у2 = 1/2. Совсем не дефицитным является сырье A (y1 = 0).

Для определения интервала устойчивости оценок найдем обратную матрицу для матрицы коэффициентов при базисных переменных в оптимальном решении системы ограничений. Базисными переменными в оптимальном решении являются x1, x2, х3, x4. Матрица коэффициентов при этих переменных в системе ограничений имеет вид

Тогда обратная матрица для матрицы А следующая:

Найдем интервал устойчивости оценок по видам сырья:

Интервал устойчивости оценок по отношению к первому ограничению:

Аналогично определим интервалы устойчивости оценок по отношению к ограничениям остальных видов сырья:

Интервалы устойчивости оценок по отношению ко второму ограничению:

к третьему ограничению:

к четвертому ограничению:

3. Изменения сырья согласно условиям задачи на +6, -3, +2, +2 т приводят к ограничению запаса сырья до 24, 13, 10, 8 т соответственно. Поскольку эти изменения находятся в пределах устойчивости оценок, на что указывают интервалы, то раздельное их влияние на прибыль определяется по формуле

тогда

Суммарное влияние на прибыль:

Если изменение сырья не находится в пределах устойчивости оценок, то необходимо найти новые условные оценки, т.е. решить задачу симплексным методом с изменением количества сырья соответствующих видов.

4. Для оценки целесообразности введения в план производства фирмы четвертого вида изделий используем формулу

Так как прибыль превышает затраты, то введение в план производства четвертого вида изделий целесообразно.

УПРАЖНЕНИЯ

Для следующих задач составить математические модели двойственных задач и по решению исходной найти оптимальное решение двойственной.

22.1. L() = x1 + 3x3 + 3x4 → min при ограничениях:

22.2. L() = 2х1 + х2 – 3x3 + х4 → max при ограничениях:

22.3. L() = -х1 + x2 + 6x3 — х4 → min при ограничениях:

22.4. L() = -3x2 + х3 – х4 → max при ограничениях:

22.5. L() = -3x1 + x2+ 3x3 – 4x4 → min при ограничениях:

Составить математическую модель двойственных задач и по ее решению найти оптимальное решение исходной.

22.6. L() = l,5x1 + 2х2 → max при ограничениях:

22.7. L() = x1 - 2x2 + x4 → min при ограничениях:

22.8. L() = -2x1 + х2 → min при ограничениях:

22.9. Для производства трех изделий А, В и С используются три вида сырья. Каждый из них используется в объеме, не превышающем 180, 210 и 236 кг. Нормы затрат каждого из видов сырья на одно изделие и цена единицы изделий приведены в табл. 22.4.

Определить план выпуска изделий, обеспечивающий получение максимального дохода.

Составить для данной задачи двойственную и найти:

оптимальный план двойственной задачи;

интервалы устойчивости двойственных оценок;

увеличение максимального дохода при увеличении количества сырья 2-го и 3-го видов на 80 и 160 кг соответственно и при уменьшении количества сырья 1-го вида на 40 кг. Оценить раздельное и суммарное влияние этих изменений;

целесообразность введения в план производства 4-го изделия, нормы затрат сырья на одно изделие которого составляют 2, 4 и 6 кг, а цена изделия равна 18 усл. ед.;

оптимальные планы исходной и двойственной задач, если количество сырья 1, 2 и 3 равно 140, 250 и 240 кг соответственно.

 

ТРАНСПОРТНАЯ ЗАДАЧА

Общая постановка задачи

Транспортная задача — одна из распространенных задач линейного программирования. Ее цель — разработка наиболее рациональных путей и способов транспортирования товаров, устранение чрезмерно дальних, встречных, повторных перевозок. Все это сокращает время продвижения товаров, уменьшает затраты предприятий, фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.

В общем виде задачу можно представить следующим образом: в т. пунктах производства A1, A2, ..., Am имеется однородный груз в количестве соответственно a1, a2,…, am. Этот груз необходимо доставить в п пунктов назначения B1, В2, …., Вп в количестве соответственно b1, b2,..., bп. Стоимость перевозки единицы груза (тариф) из пункта Ai в пункт Bj равна cij.

Требуется составить план перевозок, позволяющий вывезти все грузы и имеющий минимальную стоимость.

В зависимости от соотношения между суммарными запасами груза и суммарными потребностями в нем транспортные задачи могут быть закрытыми и открытыми.

Определение 1. Если

то задача называется закрытой. Если

то открытой.

Обозначим через xij количество груза, перевозимого из пункта Ai в пункт Bj. Рассмотрим закрытую транспортную задачу. Ее условия запишем в распределительную таблицу, которую будем использовать для нахождения решения (табл. 23.1).

Математическая модель закрытой транспортной задачи имеет вид

при ограничениях:

Оптимальным решением задачи является матрица

удовлетворяющая системе ограничений и доставляющая минимум целевой функции. Транспортная задача как задача линейного программирования может быть решена симплексным методом, однако наличие большого числа переменных и ограничений делает вычисления громоздкими. Поэтому для решения транспортных задач разработан специальный метод, имеющий те же этапы, что и симплексный метод, а именно:

— нахождение исходного опорного решения;

— проверка этого решения на оптимальность;

переход от одного опорного решения к другому.

Рассмотрим каждый из этих этапов.

Нахождение исходного опорного решения

Условия задачи и ее исходное опорное решение будем записывать в распределительную таблицу. Клетки, в которые поместим грузы, называются занятыми, им соответствуют базисные переменные опорного решения. Остальные клетки незанятые, или пустые, им соответствуют свободные переменные. В верхнем правом углу каждой клетки будем записывать тарифы. Существует несколько способов нахождения исходного опорного решения.

Рассмотрим один из них — метод минимального тарифа (элемента). Согласно этому методу, грузы распределяются в первую очередь в те клетки, в которых находится минимальный тариф перевозок cij. Далее поставки распределяются в незанятые клетки с наименьшими тарифами с учетом оставшихся запасов у поставщиков и удовлетворения спроса потребителей. Процесс распределения продолжают до тех пор, пока все грузы от поставщиков не будут вывезены, а потребители не будут удовлетворены. При распределении грузов может оказаться, что количество занятых клеток меньше, чем т + п - 1. В этом случае недостающее их число заполняется клетками с нулевыми поставками, такие клетки называют условно занятыми.

Нулевые поставки помещают в незанятые клетки с учетом наименьшего тарифа таким образом, чтобы в каждых строке и столбце было не менее чем по одной занятой клетке.

Рассмотрим нахождение исходного опорного решения транспортной задачи на конкретном примере.

Определение эффективного варианта доставки изделий к потребителю

На складах A1, А2, А3 имеются запасы продукции в количествах 90, 400, 110 т соответственно. Потребители В1, В2, B3 должны получить эту продукцию в количествах 140, 300, 160 т соответственно. Найти такой вариант прикрепления поставщиков к потребителям, при котором сумма затрат на перевозки была бы минимальной. Расходы по перевозке 1 т продукции заданы матрицей (усл. ед.)

Проверим, является ли данная транспортная задача закрытой:

следовательно, данная транспортная задача закрытая. Найдем исходное опорное решение по методу минимального тарифа.

Число занятых клеток в табл. 23.2 равно т + п - 1 = 3 + 3 – 1 = 5, т.е. условие невырожденности выполнено. Получили исходное опорное решение, которое запишем в виде матрицы:

Стоимость перевозки при исходном опорном решении составляет

 

Проверка найденного опорного решения на оптимальность

Найденное исходное опорное решение проверяется на оптимальность методом потенциалов по следующему критерию: если опорное решение транспортной задачи является оптимальным, то ему соответствует система т + п действительных чисел ui и vj, удовлетворяющих условиям ui + vj = cij для занятых клеток и ui + vj - сij ≤ 0 для свободных клеток.

Числа ui и vj называют потенциалами. В распределительную таблицу добавляют строку vj и столбец ui.

Потенциалы ui и vj находят из равенства ui + vj = cij, справедливого для занятых клеток. Одному из потенциалов дается произвольное значение, например и1 = 0, тогда остальные потенциалы определяются однозначно. Так, если известен потенциал ui, то vj = сij — ui; если известен потенциал vj, то ui = cij – vj.

Обозначим Δij = ui + vj - cij. Эту оценку называют оценкой свободных клеток. Если Δij ≤ 0, то опорное решение является оптимальным. Если хотя бы одна из оценок Δij > 0, то опорное решение не является оптимальным и его можно улучшить, перейдя от одного опорного решения к другому.

Проверим найденное опорное решение на оптимальность, добавив в распределительную табл. 23.3 столбец ui и строку vj.

Полагая u1 = 0, запишем это значение в последнем столбце таблицы.

Рассмотрим занятую клетку первой строки, которая расположена в первом столбце (1,1), для нее выполняется условие и1 + v1 = 2, откуда v1 = 2. Это значение запишем в последней строке таблицы. Далее надо рассматривать ту из занятых клеток таблицы, для которой один из потенциалов известен.

Рассмотрим занятую клетку (3,1): и3 + v1 = 3, v1 = 2, откуда и3 = 1.

Для клетки (3,3): и3 + v3 = 8, и3 = 1, v3 = 7.

Для клетки (2,3): и2 + v3 = 5, v3 = 7, и2 = -2.

Для клетки (2,2): u2 + v2 = 1, и2 = -2, v2 = 3.

Найденные значения потенциалов заносим в таблицу.

Вычисляем оценки свободных клеток:

Получили одну оценку Δ13 = 5 > 0, следовательно, исходное опорное решение не является оптимальным и его можно улучшить.

Переход от одного опорного решения к другому

Наличие положительной оценки свободной клетки (Δij > 0) при проверке опорного решения на оптимальность свидетельствует о том, что полученное решение не оптимально и для уменьшения значения целевой функции надо перейти к другому опорному решению. При этом надо перераспределить грузы, перемещая их из занятых клеток в свободные. Свободная клетка становится занятой, а одна из ранее занятых клеток — свободной.

Для свободной клетки с Δij > 0 строится цикл (цепь, многоугольник), все вершины которого кроме одной находятся в занятых клетках; углы прямые, число вершин четное. Около свободной клетки цикла ставится знак (+), затем поочередно проставляют знаки (—) и (+). У вершин со знаком (—) выбирают минимальный груз, его прибавляют к грузам, стоящим у вершин со знаком (+), и отнимают от грузов у вершин со знаком (—). В результате перераспределения груза получим новое опорное решение. Это решение проверяем на оптимальность, и т.д. до тех пор, пока не получим оптимальное решение.

Рассмотрим переход от одного опорного решения к другому на заданном примере.

Строим цикл для клетки (1,3), имеющей положительную оценку. У вершин цикла ставим знаки (+) и (—) и записываем грузы:

У вершин со знаком (—) выбираем минимальный груз, он равен 60. Его прибавляем к грузам, стоящим у положительных вершин, и отнимаем от грузов, стоящих у отрицательных вершин. Получаем новый цикл:

Новое опорное решение:

Проверим полученное решение на оптимальность. Для этого запишем его в распределительную таблицу, найдем потенциалы занятых и оценки свободных клеток (табл. 23.4).

Имеем

Построим цикл для клетки с положительной оценкой Δ21 = 1:

Произведем перераспределение грузов:

Получим новое решение, которое занесем в табл. 23.5. Проверим его на оптимальность.

Получим

Все оценки свободных клеток отрицательные, следовательно, найденное решение оптимальное. Итак,

Стоимость транспортных расходов равна

По сравнению с исходным опорным решением транспортные расходы уменьшились на 1610 — 1280 = 330 усл. ед.

Понятие комплексного числа. Комплексным числом называется выражение вида a + ib , где a и b – любые действительные числа, i – специальное число, которое называется мнимой единицей . Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом: Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда a = b и c = d . Суммой двух комплексных чисел a + ib и c + id называется комплексное число a + c + i ( b + d ). Произведением двух комплексных чисел a + ib и c + id называется комплексное число ac – bd + i ( ad + bc ).
Решение задач математического анализа