Числовые последовательности Признак монотонности функции Функции нескольких переменных Система линейных алгебраических уравнений Экономический анализ транспортных задач

Математический анализ, математическая статистика

Способы задания функции Аналитический способ: связь между аргументом x и функцией y задается формулой, при этом на разных участках области определения она может задаваться различными формулами (см. пример 2) . В примерах 1, 2 функции заданы аналитически. Табличный способ: функция задается таблицей отдельных значений аргумента и соответствующих значений функции. Такими являются таблицы тригонометрических функций, таблицы логарифмов и т.д. Графический способ: в этом случае соответствие между значениями x и y задается с помощью графика.

ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

Числовые последовательности

Числовые последовательности и операции над ними

Числовые последовательности представляют собой бесконечные множества чисел. Примерами последовательностей могут служить: последовательность всех членов бесконечной геометрической прогрессии, последовательность приближенных значений  (x1 = 1, х2 = 1,4, х3 = 1,41, ...), последовательность периметров правильных n-угольников, вписанных в данную окружность. Уточним понятие числовой последовательности.

Определение 1. Если каждому числу n из натурального ряда чисел 1, 2, 3,..., п,... поставлено в соответствие вещественное число xп, то множество вещественных чисел

x1, x2, x3, …, xn, … (2.1)

Электротехника. Примеры расчета электрических цепей Расчет электрических цепей несинусоидального тока Расчет электрических цепей, содержащих источники энергии [источники ЭДС e(t) и источники тока j(t)] с несинусоидальной формой кривой, выполняется по методу положения. Процедуру расчета можно условно разделить на три этапа.

называется числовой последовательностью, или просто последовательностью. .

Числа х1, x2, x3, ..., xп, ... будем называть элементами, или членами последовательности (2.1), символ xп — общим элементом, или членом последовательности, а число п — его номером. Сокращенно последовательность (2.1) будем обозначать символом {хп}. Например, символ {1/n} обозначает последовательность чисел

.

Иными словами, под последовательностью можно понимать бесконечное множество занумерованных элементов или множество пар чисел (п, xп), в которых первое число принимает последовательные значения 1, 2, 3, ... . Последовательность считается заданной, если указан способ получения любого ее элемента. Например, формула xп = -1 + (-1)n определяет последовательность 0, 2, 0, 2,... .

Геометрически последовательность изображается на числовой оси в виде последовательности точек, координаты которых равны соответствующим членам последовательности. На рис. 2.1 изображена последовательность {хп} = {1/n} на числовой прямой.

Понятие сходящейся последовательности

Определение 2. Число а называется пределом последовательности {xn}, если для любого положительного числа ε существует такой номер N, что при всех п > N выполняется неравенство

 (2.2)

Последовательность, имеющая предел, называется сходящейся. Если последовательность имеет своим пределом число а, то это записывается так:

Последовательность, не имеющая предела, называется расходящейся.

Определение 3. Последовательность, имеющая своим пределом число а = 0, называется бесконечно малой последовательностью.

Замечание 1. Пусть последовательность {хп} имеет своим пределом число а. Тогда последовательность {αn}= {xn — a} есть бесконечно малая, т.е. любой элемент xп сходящейся последовательности, имеющей предел а, можно представить в виде 

где αn — элемент бесконечно малой последовательности {αn}.

Замечание 2. Неравенство (2.2) эквивалентно неравенствам (см. свойство 4 модуля числа из п. 1.5)

Это означает, что при п > N все элементы последовательности {xn} находятся в ε-окрестности точки а (рис. 2.2), причем номер N определяется по величине ε.

Интересно дать геометрическую интерпретацию этого определения. Поскольку последовательность представляет собой бесконечное множество чисел, то если она сходится, в любой ε-окрестности точки а на числовой прямой находится бесконечное число точек — элементов этой последовательности, тогда как вне ε-окрестности остается конечное число элементов. Поэтому предел последовательности часто называют точкой сгущения.

Замечание 3. Неограниченная последовательность не имеет конечного предела. Однако она может иметь бесконечный предел, что записывается в следующем виде:

 (2.3)

Если при этом начиная с некоторого номера все члены последовательности положительны (отрицательны), то пишут

Если {xn} — бесконечно малая последовательность, то {1/xп} — бесконечно большая последовательность, имеющая бесконечный предел в смысле (2.3), и наоборот.

Приведем примеры сходящихся и расходящихся последовательностей.

Пример 1. Показать, используя определение предела последовательности, что .

Решение. Возьмем любое число ε > 0. Так как

то чтобы выполнялось неравенство (2.2), достаточно решить неравенство 1 / (n + 1) < ε, откуда получаем n > (1 — ε) / ε. Достаточно принять N = [(1 — ε)/ε] (целая часть числа (1 — ε)/ ε)* , чтобы неравенство |xп — 1| < ε выполнялось при всех п > N.

* Символ [a] означает целую часть числа а, т.е. наибольшее целое число, не превосходящее а. Например, [2] = 2, [2,5] = 2, [0,8] = 0, [-0, 5] = -1, [-23,7] = -24.

Пример 2. Показать, что последовательность {хп} = (-1)n, или -1, 1, -1, 1,... не имеет предела.

Решение. Действительно, какое бы число мы ни предположили в качестве предела: 1 или —1, при ε < 0,5 неравенство (2.2), определяющее предел последовательности, не удовлетворяется — вне ε -окрестности этих чисел остается бесконечное число элементов xп: все элементы с нечетными номерами равны —1, элементы с четными номерами равны 1.

Основные свойства сходящихся последовательностей

Приведем основные свойства сходящихся последовательностей, которые в курсе высшей математики сформулированы в виде теорем.

1. Если все элементы бесконечно малой последовательности {хп} равны одному и тому же числу с, то с = 0.

2. Сходящаяся последовательность имеет только один предел.

3. Сходящаяся последовательность ограничена.

4. Сумма (разность) сходящихся последовательностей {хп} и {уп} есть сходящаяся последовательность, предел которой равен сумме (разности) пределов последовательностей {xп} и {yп}.

5. Произведение сходящихся последовательностей {хп} и {уп} есть сходящаяся последовательность, предел которой равен произведению пределов последовательностей {хп} и {уп}.

6. Частное двух сходящихся последовательностей {хп} и {уп} при условии, что предел последовательности {уп} отличен от нуля, есть сходящаяся последовательность, предел которой равен частному пределов последовательностей {хп} и {yп}.

7. Если элементы сходящейся последовательности {хn} удовлетворяют неравенству xп ≥ b (хп ≤ b) начиная с некоторого номера, то и предел а этой последовательности удовлетворяет неравенству а ≥ b (а ≤ b).

8. Произведение бесконечно малой последовательности на ограниченную последовательность или на число есть бесконечно малая последовательность.

9. Произведение конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Рассмотрим применение этих свойств на примерах.

Пример 3. Найти предел .

Решение. При n  числитель и знаменатель дроби стремятся к бесконечности, т.е. применить сразу теорему о пределе частного нельзя, так как она предполагает существование конечных пределов последовательностей. Преобразуем данную последовательность, разделив числитель и знаменатель на n2. Применяя затем теоремы о пределе частного, пределе суммы и снова пределе частного, последовательно находим

Пример 4. Найти предел последовательности {xп} =  при п

Решение. Здесь, как и в предыдущем примере, числитель и знаменатель не имеют конечных пределов, и потому сначала необходимо выполнить соответствующие преобразования. Поделив числитель и знаменатель на n, получаем

Поскольку в числителе стоит произведение бесконечно малой последовательности на ограниченную последовательность, то в силу свойства 8 окончательно получаем

Пример 5. Найти предел последовательности {хп} =  при п .

Решение. Здесь применить непосредственно теорему о пределе суммы (разности) последовательностей нельзя, так как не существует конечных пределов слагаемых в формуле для {хп}. Умножим и разделим формулу для {хn} на сопряженное выражение :

Число е

Рассмотрим последовательность {хп}, общий член которой выражается формулой 

В курсе математического анализа доказывается, что эта последовательность монотонно возрастает и имеет предел. Этот предел называют числом е. Следовательно, по определению

Число е играет большую роль в математике. Далее будет рассмотрен способ его вычисления с любой требуемой точностью. Отметим здесь, что число е является иррациональным; его приближенное значение равно е = 2,7182818... .

Применение в экономике

Рассмотрим два примера из экономики на использование числа е.

Пример 1. Известно, что формула сложных процентов имеет вид

 (2.4)

где Q0 — первоначальная сумма вклада в банк, р — процент начисления за определенный период времени (месяц, год), п — количество периодов времени хранения вклада, Q — сумма вклада по истечении п периодов времени. Формулы типа (2.4) используются также в демографических расчетах (прирост народонаселения) и в прогнозах экономики (увеличение валового национального продукта). Пусть первоначальный депозит Q0 помещен в банк под р = 100% годовых, тогда через год сумма депозита составит 2Q0. Предположим, что через полгода счет закроется с результатом  и эта сумма будет вновь помещена в качестве депозита в том же банке. В конце года депозит будет составлять . Будем уменьшать срок размещения депозита в банке при условии его последующего размещения после изъятия. При ежеквартальном повторении этих операций депозит в конце года составит . Если повторять операцию изъятие-размещение в течение года сколько угодно раз, то при ежемесячном манипулировании сумма за год составит ; при ежедневном посещении банка ; при ежечасном —  и т.д. Нетрудно видеть, что последовательность значений возрастания первоначального вклада {qn} = {Qn/Q0} как раз совпадает с последовательностью, пределом которой является число ε при п  согласно (2.4). Таким образом, доход, который можно получить при непрерывном начислении процентов, может составить за год не более чем

В общем случае, если р — процент начисления и год разбит на n частей, то через t лет сумма депозита достигнет величины

где r = р/100. Это выражение можно преобразовать:

Мы можем ввести новую переменную  и при n  получим m , или

Расчеты, выполненные по этой формуле, называют вычислениями по непрерывным процентам. 

Пример 2. Пусть темп инфляции составляет 1% в день. Насколько уменьшится первоначальная сумма через полгода?

Решение. Применение формулы сложных процентов дает

где Q0 — первоначальная сумма, 182 — число дней в полугодии. Преобразуя это выражение, получаем

т.е. инфляция уменьшит первоначальную сумму примерно в 6 раз.

УПРАЖНЕНИЯ

Найти пределы следующих последовательностей.

2.1.  2.2.  2.3.  2.4.  2.5.  2.6.  2.7.  2.8.

2.9. Прирост населения страны составляет р процентов в год. За сколько лет население страны удвоится? Дать ответ при а) р = 3% и б) р = 5%.

2.10. Коммерческий банк, обслуживающий предприятие по выдаче заработной платы, задерживает перечисляемые ему средства в среднем на 9 месяцев. За это время он успевает три раза "прокрутить" эти деньги в виде краткосрочных кредитов, выдаваемых частным предпринимателям на три месяца, под 3% в месяц. Сколько процентов прибыли получает банк на этой операции?

2.11. В условиях предыдущей задачи рассчитать, что выгоднее банку: кредитовать из собственных средств предприятия на условиях ставки годового процента, равной 20%, или заниматься вышеуказанной деятельностью.

2.12. Темп инфляции составляет 6% в месяц. Каков должен быть процент годовой ставки кредита, выдаваемого банком, чтобы прибыль от кредитования составляла 12% в год?

В книге изложены необходимые основы математического аппарата и примеры его использования в современных экономических приложениях: математический анализ функций одной и нескольких переменных, элементы линейной алгебры, основы теории вероятностей и математической статистики, элементы линейного программирования и оптимального управления. Именно такой объем знаний актуален сегодня для лиц, получающих образование по экономическим специальностям (в том числе и второе образование), и соответствует требованиям государственных образовательных стандартов по экономическим дисциплинам.

Определение функциональной зависимости Пусть Х и Y — некоторые числовые множества и пусть каждому элементу x  Х по какому-либо закону f поставлен в соответствие один элемент у  Y. Тогда будем говорить, что определена функциональная зависимость у от x по закону у = f(x). При этом x называют независимой переменной (или аргументом), у — зависимой переменной, множество Х — областью определения (существования) функции, множество Y — областью значений (изменения) функции.

Теоремы о пределах функций Арифметические операции над функциями, имеющими предел в точке а, приводят к функциям, также имеющим предел в этой точке.

Приведем примеры использования функций в области экономики. Кривые спроса и предложения. Точка равновесия. Рассмотрим зависимости спроса D (demand) и предложения S (supply) от цены на товар Р (price). Чем меньше цена, тем больше спрос при постоянной покупательной способности населения. Обычно зависимость D от Р имеет вид ниспадающей кривой

Понятие функции нескольких переменных. Область определения. Графики. Примеры. Пусть задано множество D упорядоченных пар чисел (х;у). Соответствие f, которое каждой паре чисел (x;y)I^D сопоставляет одно и только одно число uI^R, называется функцией двух переменных, определенной на множестве D со значениями в R, и записывается в виде u=f(x;y) или f:D?R. При этом х и у называются независимыми переменными (аргументами), а u - зависимой переменной (функцией).
Решение задач математического анализа