Метод непосредственного интегрирования Аналитическая геометрия на плоскости Элементы  линейной алгебры. Аналитическая геометрия в пространстве Основы дифференцирования Интегрирование по частям Двойной интеграл.

Введение в математический анализ. Вычисление интеграла

ПРАКТИКУМ по теме «Криволинейный интеграл» Задача: Кусочно-гладкая кривая линия L на плоскости соединяет точки А и В и определяется уравнением y = y(x) , [a,b] или x = x(t), Вдоль кривой распределены массы с плотностью f(M) для каждой точки М. Вычислим общую массу всей системы метод интегральной суммы.

Интегралы по поверхности 1 и 2 рода

Поверхностные интегралы 1-го рода. Пусть - двусторонняя поверхность, имеющая площадь . Рассмотрим разбиение этой поверхности на части с помощью непрерывных кривых. Пусть функция определена во всех точках поверхности . Выберем произвольным образом точки и рассмотрим сумму .

Определение. Пусть . Если , то мы говорим, что есть поверхностный интеграл 1-го типа от функции по поверхности и обозначаем это следующим образом: .

Отметим, что в определении интеграла первого типа сторона поверхности не участвует. Пример задачи, моделью которой служит поверхностный интеграл первого типа – нахождение массы поверхности , поверхностная плотность которой в точке равна .

Для вычисления поверхностного интеграла 1-го типа удобно использовать следующие формулы. Вычисление двойного интеграла повторным интегрированием Повторные интегралы I случай. Прямоугольная область.

Теорема 1. Пусть поверхность задана уравнением , где - непрерывно дифференцируемая на квадрируемой областифункция, . Тогда для любой непрерывной на поверхности функции .

Замачание 1. Если поверхность задана уравнением , где - непрерывно дифференцируемая на квадрируемой области функция, то . Аналогично, в случае задания поверхности уравнением при аналогичных условиях на область и функцию .

Теорема 2. Если поверхность задана параметрическими уравнениями , где - непрерывно дифференцируемые функции на . Пусть непрерывна на . Тогда .

Теоремы 1 и 2 мы оставим без доказательства.

Вместо этого приведем пример вычисления поверхностного интеграла 1-го типа.

Задача. Найти , где - граница тела .

Решение. Это тело представляет собой конус. состоит из боковой поверхности и основания . На боковой поверхности, уравнение которой всюду, кроме точки и и .

Нарушение этой формулы в единственной точке не повлияет на результат, поэтому , где - проекция на плоскость , т.е. - круг .

В интеграле, стоящем в правой части, перейдем к полярным координатам: ( - якобиан преобразования) .

Основание задано уравнением , поэтому и (этот интеграл отличается от вычисленного выше лишь множителем, поэтому подробное вычисление опущено).

Итак, весь интеграл .

Поверхностные интегралы 2-го рода.

Пусть двусторонняя поверхность. Выберем определенную сторону этой поверхности. Пусть обозначает нормаль, соответствующую выбранной стороне.

Предположим, что задано векторное поле , определенное и непрерывное на .

Определение. Величина называется поверхностным интегралом 2-го типа от векторного поля по выбранной стороне поверхности .

Этот же интеграл часто записывают так: . При этом для выбранной стороны использованы обозначения , .

Для вычисления поверхностного интеграла 2-го типа используются следующие правила.

Теорема 1. Пусть поверхность задана уравнением , где - непрерывно дифференщируемая в области функция, - непрерывная на функция. Тогда если выбрана верхняя сторона , то , а если выбрана нижняя сторона, то .

Аналогично, если задана уравнением , , где - непрерывно дифференцируемая функция на , то , если нормаль составляет с осью острый угол и , если нормаль составляет с осью тупой угол.

Если же , - непрерывно дифференцируемая на функция, а непрерывна на , то , если выбранная нормаль составляет с осью острый угол и , если нормаль составляет с осью тупой угол.

Теорема сформулирована без доказательства.

Следствие 1. Если поверхность допускает представление как в виде , так и в виде и в виде , то при условиях теоремы 1 , где выбор знака + или – перед соответствующим слагаемым в правой части равенства определяется тем, какой угол составляют нормали к выбранной стороне с соответствующей осью.

Следствие 2. Если представляет собой конечное объединение непересекающихся поверхностей, , каждая из которых удовлетворяет условиям следствия 1, то и для вычисления используется следствие 1.

Теорема 2. Пусть двусторонняя поверхность задана параметрическими уравнениями , где - непрерывно дифференцируемые функции и .

Тогда для непрерывным на функций и выбранной нормали , где, напоминаем, , , . При этом выбор знака "+" или "-" перед интегралом производится в соответствии с выбором нормали (и, следовательно, стороны) поверхности. К примеру, если указано, что нормаль составляет с осью острый угол, то знак перед интегралом совпадает со знаком .

Теорема 2 также дана без доказательства.

Пример. Приведем пример вычисления поверхностного интеграла 2-го типа , где- внешняя сторона сферы . Обозначим . Из соображений симметрии очевидны равенства , так что . Поверхность состоит из частей и , задаваемых уравнениями (это - верхняя полусфера) и (это уравнение для нижней полусферы ). На внешняя нормаль составляет с осью острый угол, на - тупой.

Поэтому . Аналогично, т.к. на , а нормаль составляет с осью тупой угол, . Значит, . Поэтому .

13.Формула Остроградского. Ее векторная запись

Теорема. Пусть - замкнутая кусочно-гладкая поверхность, ограничивающая тело в пространстве. Пусть выбрана внешняя сторона . Пусть - функции, имеющие непрерывные производные на . Тогда . Равносильная формулировка: , где - внешняя нормаль к .

Доказательство. Предположим, что ограничено сверху - графиком функции , снизу - , , а сбоку – цилиндрической поверхностью .

Вычислим, т.к. на внешняя нормаль составляет с осью тупой угол.

Далее, на и можно добавить к сумме слагаемое .

Итак, .

Далее, если поверхность можно представить в виде объединения поверхностей и цилиндрической поверхности, то ,и, при аналогичных условиях, .

Поэтому, если поверхность удовлетворяет условиям всех трех случаев, то .

Теперь предположим, что состоит из конечного числа тел , разделенных гладкими поверхностями , причем эти тела удовлетворяют сформулированным выше условиям. Для простоты, пусть .

Тогда . Каждый из интегралов преобразуем по формуле Остроградского-Гаусса как , где взяты внешние стороны поверхностей .

Поверхности имеют общую часть , причем их внешние нормали на противоположны и интегралы по от взаимно сократятся, поэтому .

Тем самым, теорема доказана.

Векторная запись формулы Остроградского. Вспомним формулировку теоремы Остроградского-Гаусса: , где - непрерывно дифференцируемое векторное поле, - замкнутая поверхность, ограничивающая объем и - вектор внешней нормали.

Левая часть формулы имеет вид , т.е. представляет собой поток через внешнюю сторону , а правую часть можно выразить следующим образом: . Итак, векторная формулировка теоремы Остроградского-Гаусса:

При сформулированных выше условиях .

Криволинейный интеграл 2-го рода

Признак полного дифференциала на плоскости Если - дифференцируемая функция двух переменных, то . Выясним, при каких условиях на существует такая функция , что , т.е. . В предположении непрерывности смешанных производных: или . Докажем, что если - односвязная область, то верно и обратное.

Формула Стокса. Ее векторная запись

Раздел дифференциальных уравнений представлен линейными уравнениями I порядка, однородными уравнениями I порядка, уравне-ниями в полных дифференциалах, линейными дифференциальными уравнениями высших порядков с постоянными коэффициентами.
Решение задач на вычисление интегралов