Расчет характеристик надежности невостанавливаемых резервированных изделий

Информац. системы

Критерии надежности
Задачи
Расчет характеристики
Типовые примеры
Отказы изделия
Аналит. определение
Постоянное резервир.
Резервирование замещением
Расчет надежности
Скользящее резервирование
Расчет показателей
Учебник JAVA
Базовые понятия
Объектно-ориентированное
программирование
Работа со строками и классами
Графические примитивы
Обработка событий в JAVA
Апплеты
Создание сетевых приложений
Сетевые средства в JAVA
Экспертные системы
Учебник Delphi
Компьютерные сети
Топология сетей
Адресация
Структура сети
Сетевые службы
Маршрутизаторы
Технологии ISDN
Протоколы маршрутизации
Модель OSI
Корпоративные сети
Стек протоколов TCP/IP
Коммутация каналов
Коммутация пакетов
Удаленный доступ
Система доменных имен
Моделирование
Основы кодирования
Теория информ. процессов
Обмен информацией
Количество информации
Энтропия
Кодирование
Квантование и дискретизация
Теорема Котельникова
Ошибки дискретизации
Учебник по FrontPage
Информационный подход
SQL язык запросов
Ос новные понятия
Выборка данных

Манипулирование данными

Создание базы данных
Устройство ПК
Архитектура ПК
Классификация элементов
Центральный процессор
Внешние устройства
Программное обеспечение

Методы расчета

Общее резервирование с постоянно включенным резервом и с целой кратностью

Раздельное резервирование с постоянно включенным резервом и с целой кратностью

Общее резервирование замещением с целой кратностью

Раздельное резервирование замещением с целой кратностью Функции нескольких переменных Математика Примеры решения задач

Общее резервирование с дробной кратностью и по­стоянно включенным резервом

Скользящее резервирование

Последействие отказов

При экспоненциальном законе надежности

Среднее время безотказной работы системы

Типовые примеры по расчету надежности

Первая особенность заключается в том, что в зацеплении и передаче нагрузки может одновременно участвовать большое число пар зубьев. Чем больше крутящий момент М на гибком звене 1, тем сильнее оно искривляется (рис. 43, а), тем больше пар зубьев находится в зацеплении и тем большую нагрузку может выдержать передача.

Спироидные передачи по внешнему виду похожи на гипоидные, имеющие большой угол наклона и малое число зубьев ведущего колеса. Ведущим звеном спироидной передачи является спироидный конический червяк с постоянным шагом и углом наклона боковой поверхности витка (винтовые зубья). Е –– смещение конического червяка относительно оси ведомого колеса

Виброизоляция и виброзащита Создание высокопроизводительных машин и скоростных транспортных средств, форсированных по мощностям, нагрузкам и другим рабочим характеристикам, неизбежно приводит к увеличению интенсивности и расширению спектра вибрационных и виброакустических полей.

Статическая и динамическая балансировка роторов Развитие техники характеризуется повышением мощности агрегатов и расширением класса быстроходных машин, что обуславливает возрастание их динамической нагруженности и увеличения влияния колебательных явлений на их работу. Именно вибрационное состояние во многом определяет ресурс и надежность машины, интенсивность и характер износа подшипников, точность выполнения заданного технологического процесса и т.п.

Динамическая балансировка Роторы, размеры которых вдоль оси вращения значительны, требуют динамической балансировки, так как главный момент дисбалансов таких роторов будет существенным. Поэтому неуравновешенность будет выражаться не только главным вектором дисбалансов или двумя скрещивающимися векторами дисбалансов, т.е. будет динамической.

Эффективность виброзащиты Под эффективностью виброзащиты понимается степень реализации виброзащитным устройством целей виброзащиты.

Трение в кинематических парах Природа и виды трения При работе машин и механизмов происходит явление, которое сопровождается рассеиванием механической энергии. Это явление называется трением. Общее сопротивление, возникающее на поверхности двух соприкасающихся тел (рис. 53) при относительном скольжении их, называется силой трения.

Силой трения покоя называется составляющая полной реакции для трущихся тел, лежащая в общей касательной плоскости к поверхностям контакта. Величина этой силы и ее направление зависят от внешних сил, приложенных к трущимся телам, но не могут превышать предельной (полной) силы трения покоя, под которой понимается сила трения покоя, по достижении которой начинается относительное движение трущихся тел.

Жидкостное трение При жидкостном трении трущиеся поверхности должны быть полностью разделены слоем жидкости (смазки). В этом случае относительное скольжение поверхностей сопровождается только внутренним трением слоев жидкости, и величина силы трения оказывается значительно меньше, чем при сухом или граничном трении.

Трение во вращательной паре. Рассмотрим вращательную пару, в которую входят звенья i и j, при условии, что между цилиндрическими элементами этой пары имеется зазор. Тогда при сухом или граничном трении касание элементов пары происходит по линии, совпадающей с общей образующей цилиндрических элементов пары

Коэффициент полезного действия (КПД), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии, определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой, обозначается обычно η = Wпол/Wсум.

 

 

 

Математический анализ, лекции по физике Компьютерные сети