Методика решения задач по кинематике Электротехника Кинематика Электромагнитные волны Оптика Ньютона Волновая оптика Поляризация света Дифракция Экзаменационные вопросы

Методика решения задач по физике. Примеры решения задач к контрольной работе

Классификация магнетиков.

В то время как диэлектрическая проницаемость ε у всех веществ всегда больше единицы (диэлектрическая восприимчивость κ>0), магнитная проницаемость μ может быть как больше единицы, так и меньше единицы (соответственно магнитная восприимчивость χ >0 и χ<0). Поэтому магнитные свойства веществ отличаются гораздо большим разнообразием, чем электрические свойства.

По классификации В.Л.Гинзбурга (Нобелевская премия по физике, 2004г.) можно выделить шесть типов магнетиков. Они перечислены в приводимой ниже таблице.

 Таблица. Современная классификация магнетиков.

Тип магнетика

Магнитная восприимчивость, χ

Диамагнетик

 - (10-9 – 10-4), μ<1

Парамагнетик

 10-6 – 10-3, μ>1

Ферромагнетик

 103 – 105 , μ(Н)>>1

Ферримагнетик

 101 – 103 , μ(Н)>>1

Антиферромагнетик

 10-4 – 10-6, μ>1

Сверхдиамагнетик

 - 1 , μ=0

Дадим краткую характеристику каждого типа магнетика.

Диамагнетики – вещества, характеризуемые отрицательным значением магнитной восприимчивости χ. Вследствие этого вектор намагничивания   в этих веществах направлен противоположно внешнему намагничивающему полю . Диамагнетиками являются, например, вода (χ = - 9∙10-6), серебро (χ = - 2,6∙10-5), висмут (χ = - 1,7∙10-4).

Парамагнетики – характеризуются положительным значение χ , ведут они себя подобно диэлектрикам с диэлектрической проницаемостью ε>1, то есть вектор   в этих веществах параллелен намагничивающему полю . К парамагнетикам относятся алюминий (χ = 2,1∙10-6), платина (χ = 3∙10-4), хлористое железо (χ =  2,5∙10-3).

Ферромагнетики – особый вид магнетиков, отличающийся от других магнетиков следующими характерными признаками: 1) высоким значением магнитной восприимчивости (см. таблицу); 2) зависимостью магнитной проницаемости μ от напряженности магнитного поля, вследствие чего зависимость   от  для этих веществ является нелинейной; 3) наличием петли гистерезиса на кривой намагничивания; 4) существованием температуры, называемой точкой Кюри, выше которой ферромагнетик ведет себя как обычный парамагнетик. Из чистых металлов ферромагнетиками являются железо, никель, кобальт, а также некоторые редкоземельные металлы (например, гадолиний). К числу ферромагнетиков относятся сплавы и соединения этих металлов, а также сплавы и соединения марганца и хрома с неферромагнитными элементами (например, MnAlCu, CrTe и другие).

Ферримагнетики (ферриты) – вещества, в которых магнитные моменты атомов кристаллической решетки образуют несколько магнитных подрешеток с магнитными моментами, направленными навстречу друг другу. Имея меньшую величину магнитной восприимчивости по сравнению с ферромагнетиками, в остальном ферримагнетики характеризуются теми же признаками, что и ферромагнетики. Типичными ферритами являются соединения оксидов железа с оксидами других металлов - шпинели (MnFe2O4), гранаты Gd3Fe5O12), гексаферриты (PbFe12O19). Другую группу ферритов образуют двойные фториды типа RbNiF3, а также соединения типа RFe2 (R – редкоземельный металл).

Антиферромагнетики – частный случай ферримагнетиков, в которых магнитные моменты подрешеток с противоположно направленными магнитными моментами полностью компенсируют друг друга (скомпенсированный ферримагнетик). Существование антиферромагнетиков было предсказано Л.Д.Ландау в 1933г. В настоящее время известен широкий спектр веществ, обладающих антиферромагнитными свойствами: редкоземельные элементы (Er, Dy, Ho), оксиды и дифториды некоторых металлов (FeO, MnO, CoF2, NiF2), соли угольной и серной кислот (MnCO3, NiSO4) и другие.

Сверхдиамагнетики (идеальные диамагнетики) – вещества, магнитная прони-цаемость μ которых равна нулю. Благодаря этой особенности для сверхдиамагнетиков имеет место эффект Мейсснера-Оксенфельда (Meissner W., 1882-1974; Ocksenfeld C.) – полное выталкивание магнитного поля из объема сверхдиамагнетика (магнитная индукция=0). Сверхдиамагнетиками являются все вещества, находящиеся в сверхпроводящем состоянии - низкотемпературные сверхпроводники (металлы) и высокотемпературные сверхпроводники (керамики). Из несверхпроводящих материалов, обладающих сверхдиамагнитными свойствами, известен пока только один пример – хлорид меди (CuCl), открытый в 1986г. (Русаков А.П., МИСиС).

3.16. Граничные условия для магнитного поля.

При переходе через границу раздела двух магнетиков с различными магнитными проницаемостями μ1 и μ2 силовые линии магнитного поля испытывают преломление (рис.11.2). Для того, чтобы выяснить, как происходит преломление линий поля необходимо установить для его нормальных и тангенциальных составляющих граничные условия. Вывод граничных условий для магнитного поля в точности аналогичен выводу граничных условий для электрического поля и основывается на применении основных теорем магнитостатики – теоремы Гаусса и теоремы о циркуляции магнитного поля.

Рис.11.2. К выводу граничных условий для магнитного поля.

Для нормальных составляющих индукции теорема Гаусса дает (см. рис.11.2):

,

где S1 = S2.

Поток индукции поля через боковую поверхность цилиндра при  (переход к пограничному слою) становится исчезающе малым и им можно пренебречь. Следовательно, при переходе через границу раздела двух однородных магнетиков нормальные составляющие индукции магнитного поля непрерывны:

.

Считая, что по границе раздела магнетиков не текут поверхностные токи (I = 0), будем иметь для тангенциальных составляющих напряженности магнитного поля, согласно теореме о циркуляции поля (рис.11.2):

,

где a1 = а2 = а.

Составляющие циркуляции поля по коротким сторонам контура обхода границы при  (стягивание к границе) исчезают. Таким образом, приходим к выводу, что при переходе через границу раздела двух однородных магнетиков тангенциальные составляющие напряженности магнитного поля непрерывны:

.

Для построения картины преломления силовых линий поля на границе раздела двух магнетиков к полученным граничным условиям необходимо присоединить еще условия, вытекающие из материального уравнения, связывающего векторы  и :

 и .

Тем самым, задача о преломлении линий поля полностью решается.


На главную